Cytosolic alkalinization of vascular endothelial cells produced by an abrupt reduction in fluid shear stress.

نویسندگان

  • R C Ziegelstein
  • P S Blank
  • L Cheng
  • M C Capogrossi
چکیده

Reductions in fluid shear stress produce endothelium-dependent vasoconstriction and promote neointimal hyperplasia, but the intracellular signaling mechanisms involved in these processes are poorly understood. To examine whether decreases in fluid shear stress affect endothelial cytosolic pH, carboxy-seminaphthorhodafluor-1-loaded rat aortic endothelial cells were cultured in glass microcapillary tubes and examined during abrupt reductions in laminar flow. After a 30-minute exposure to a shear stress of 2.7 dyne/cm2 in bicarbonate buffer, the acute reduction of fluid shear stress from 2.7 to 0.3 dyne/cm2 transiently increased cytosolic pH from 7.20+/-0.02 to 7.47+/-0.07 (mean+/-SEM, P<.05 versus control). This was not affected by prior inhibition of the Na+-H+ exchanger with 10 micromol/L ethylisopropylamiloride but was abolished in bicarbonate-free buffer. Recovery from an ammonium chloride prepulse-induced acid load occurred more rapidly when fluid shear stress was abruptly reduced from 2.7 to 0.3 dyne/cm2 after maximal acidification (+0.04+/-0.02 pH unit at 2 minutes) than when shear stress was maintained at 2.7 dyne/cm2 continuously (0.00+/-0.00 pH unit at 2 minutes, P<.05). This accelerated cytosolic pH recovery was dependent on the presence of bicarbonate ion and was blocked by the addition of the exchange inhibitors DIDS (100 micromol/L) and ethylisopropylamiloride or by removal of buffer Na+, indicating that the acute reduction in fluid shear stress activates the extracellular Na+-dependent Cl(-)-HCO3- exchanger and the Na+-H+ exchanger and increases cytosolic pH in vascular endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1.

BACKGROUND When challenged with extracellular fluid shear stress, vascular endothelial cells are known to release nitric oxide, an important vasodilator. Here, we show that the ability of cultured endothelial cells to sense a low range of fluid shear depends on apical membrane organelles, called cilia, and that cilia are compartments required for proper localization and function of the mechanos...

متن کامل

Hemodynamic forces in endothelial dysfunction and vascular aging.

Aging is a key risk factor associated with the onset of cardiovascular disease. Notably, vascular aging and cardiovascular disease are both associated with endothelial dysfunction, or a marked decrease in production and bioavailability the vasodilator of nitric oxide (NO). As a result of decreased nitric oxide availability, aging vessels often exhibit endothelial cell senescence and increased o...

متن کامل

Linear Shear Conditioning Improves Vascular Graft Retention of Adipose-Derived Stem Cells by Upregulation of the α5β1 Integrin

Use of adult adipose-derived stem cells (ASCs) as endothelial cell substitutes in vascular tissue engineering is attractive because of their availability. However, when seeded onto decellularized vascular scaffolding and exposed to physiological fluid shear force, ASCs are physically separated from the graft lumen. Herein we have investigated methods of increasing initial ASC attachment using l...

متن کامل

Fluid shear stress enhances the sphingosine 1-phosphate responses in cell-cell interactions between platelets and endothelial cells.

Fluid shear stress modulates the functional responses of platelets and vascular cells, and plays an important role in the pathogenesis of vascular disorders, including atherosclerosis and restenosis. Since shear stress induces activation of platelets, which abundantly store sphingosine 1-phosphate (Sph-1-P), and upregulates the mRNA expression of S1P(1), the most important Sph-1-P receptor expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 82 7  شماره 

صفحات  -

تاریخ انتشار 1998